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Chapter I

Introduction

1.I. Formulation

Many decision making problems can be formulated as a 0-1 integer

program. The computation time for the existing algorithms for

solving these problems increases rapidly with the size of the

problem. Even with today's computers, sometimes it is not possible

to obtain optimal solutions for these problems. Therefore, heuristic

procedures can either be used to find a good approximate solution to

the problem or to increase the efficiency of an optimal algorithm by

obtaining a good starting solution.

This thesis presents heuristic procedures for 0-1 linear

programming problems. These are based on 9Rllier's heuristic

procedures for pure integer linear programming [7,16,18]. The

original procedures when tested were consistently close to optimal

and frequently had actually been optimal. They were designed for

general integer programming problems. Therefore, they were mainly

tested on such problems. The aim in this thesis has been to

streamline these procedures to exploit the structure of 0-1 integer

programming. The procedures were designed for the following pure 0-1

integer programming problem.

n

maximize Z. =

j=l

suIbject to

S



n
Z ajxj b (i - 1,2, . .,m) (I)

j= 
iI

x 0 (j = 1,2, . .,n) (2)

xj 0 or I (j= 1,2, . .,n) (3)

Three main procedures have been studied. Some of these

procedures assume some of the following:

cj • 0 (j = 1,2, . .,n) (4)

(i 1,2, . .,m)

aij 0 C( = 1,2, . .,n)

bi > 0 (1 = 1, . .,m) (6)

cj is an integer (j = 1,2, . .,n) (7)

Procedure 3 assumes all four. Therefore, it is designed for

multi-constraint knapsack type problems. Procedure 2 assumes (4),

(6) and (7). However, since (5) is not assumed, a problem with

negative objective coefficients can easily be transformed into the

required form by substituting (1 - x1) throughout the model (where x

also is a binary variable) for each xj with cj < 0. Procedure I

assumes only (7) and that the set of solutions that satisfy

constraints (1) and (2) possesses an interior point. Note that any

objective function with rational coefficients can be transformed to

satisfy (7) by multiplying through by a common denominator.

a2
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The notation used throughout this thesis is consistent with

[16,181. For Procedure 1 and parts of Procedures 2 and 3, the

constraints are normalized so that they become:

n
Z al x b b'

i-I iij I

where

a' a / ~ 2 (1 1,2, *.m

ii ii i= i (j =1,2, . .,n)

n
b'=b / E 2 j( ,2 ,)

n
b' is the Euclidean distance from the hyperplane, E a =ix i to

the origin.
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1.2 Survey of Related Work

Over the past 30 years, there has been substantial research on

developing algorithms for finding an optimal solution for integer

programming problems. in [9] these algorithms are grouped according

to whether they are based primarily on enumeration, Bender's

Decomposition, cutting planes, or group theory. Enumerative

algorithms include those which use implicit enumeration and branch-

and-bound. For the pure integer programming problem, enumerative

algorithms have been developed by Balas [1], Hillier [171, Faaland

and Hillier [71, Geoffrion [81, Glover [101, Hammer and Rudeam [15],

Lemke and Spielberg [221, and Woiler (331, among others. The above

algorithms base their fathoming tests mainly on the logical

implications of the problem constraints. The first branch-and-bound

algorithm, which was developed by Land and Doig [21] for mixed as

well as pure integer programs, bases its fathoming test mainly on

associated linear programs. An improved variation of this algorithm

subsequently was developed by Dakin [5]. Bender's approach [3] is

used for mixed integer programming, since it essentially decomposes a

mixed problem down to solving an alternating sequence of pure integer

and pure linear problems. The cutting-plane approach was the first

general approach taken to solving integer programs. The foundations

of this approach were laid by Gomory [11,12]. His algorithms deal

with dual feasible solutions, so that a primal feasible all-integer

solution is not obtained until an optimal solution Is reached. The

Group Theoretic approach also was intiated by Gomory [131. Further

studies of this type have been done by Shapiro [27,28,291, Glover

[101, Thiriez [301, and Wolsey [34]. This approach is generally

4
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applied to pure integer problems. A more recent algorithm by Crowder

et al. [41, uses a combination of problem preprocessing, cutting

planes, and the branch-and-bound technique. Their computational

experience on large scale pure zero-one linear problems has been

impressive.

Because of the significant computational limitations of integer

programming algorithms for obtaining an optimal solution, there has

been considerable research on heuristic algorithms for efficiently

seeking very good solutions that are not guaranteed to be optimal.

Such algorithms have been developed by Balas and Martin [2], Reiter

and Rice [23], Echols and Cooper [6], Senju and Toyoda [26], Hillier

[16,181, Faaland and Hillier [7], Roth [25], Kochenberger, McCard and

Wyman [20], Ibaraki, Ohashi, and Mine [19], and Toyoda [30]. The

ones presented in [2], [261 and [31] are specifically designed for

the binary integer programming case.

Balas and Martin [2] use the fact that a 0-1 program is

equivalent to the associated linear program with the added

requirement that all slack variables, other than those in the upper

bound constraints, be basic. Toyoda [31] assigns measures of

preferability to zero-one variables that change the values of the

variables from zero to one. Senju and Toyoda [26] start the

heuristic search from an initial solution which has all xj = 1, and

then the variables that provide the smallest contribution to

objective function increase per unit of weighted infeasibility are

dropped to zero.

Since the heuristic procedures developed in this thesis for 0-1

integer programming are based on Hillier's procedures for general

5
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integer programming, Hillier's procedures are described in some

detail in the next chapter under the label of "Original Procedures."

Zanakis [35] examined the performance of three heuristic methods

(Senju-Toyoda [261, Kochenherger et al. 120], and Hillier [161) when

applied to the 0-1 linear programming problem with nonnegative

coefficients.

Since the latter two algorithms were designed for general

integer linear programming, Zanakis simply added upper hounds of one

on the variables without any streamlining for this special structure

(not even the upper hound technique for the simplex method). The

effectiveness of each algorithm was measured in terms of computing

time, error and relative error. According to the test results,
*0

Hillier's algorithm was the most accurate but not as fast as the

other two. '[ochenberger's et al. heuristic was the fastest of the

three in tightly constrained problems. In general, the Senju-Toyoda

algorithm tended to lhe the fastest, but was the least accurate on

small and medium size problems.

The heuristic algorithms developed here are designed so that

thev will he as accurate as Hillier's original algorithms without

requiring as much computational effort because they are designed

specifically for the 0-1 integer programming case.

6
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Chapter 2

Construction of the Procedures

In constructing Procedures 1,2 and 3, the aim has been to

decrease the computatioi time for Hillier's pure Integer Programming

Heuristic Procedures by considering that the values of the variables

can only be 0 or 1. For Procedures 2 and 3, the additional special

structure assumed also is considered.

The original procedures have a three-phase approach. Phase 1

identifies a general region within which to explore for good feasible

solutions by finding the optimal non-integer solution by the simplex

method and a second point well into the feasible region. Phase 2

searches for a feasible integer solution by moving along the line

segment from the first point to the second to initiate searches.

Phase 3 tries to improve on the feasible solution obtained in Phase

.. *2. The final solution in this phase is the desired approximate

solution.

In the present procedures, certain changes have been made in

different phases. In the original procedures, alternative methods

were introduced for each phase. After examining the test results of

the original procedure [16,18], the apparent best method for each

phase has been selected. In some cases, phases have been changed

* . completely in order to find a more appropriate method for the 0-1

integer programming case. Each procedure will be described in detail

in the following sections.

.y4
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2.1 Procedure I

Procedure I is based directly on the heuristic procedures for

general ILP in [16]. Therefore, it also has three phases. Certain

.112 changes and streamlining have been incorporated into each phase. The

following subsections give a summary description of each phase of the

original procedures followed by a discussion of the changes and

streamlining for the 0-1 case.

a. Phase I

(i) Original Procedures

Phase I of this procedure starts by solving the LP-relaxation of

the problem to find its optimal solution x( l). The next step is to

find a second point x(2) well into the feasible region. Phase I ends

*by constructing the line segment between the two points. [16]

provides two methods (labeled I and 2) for finding x(2), [7

generalizes the approach to finding a piecewise linear path, and [181

provides another generalization.

(ii) Changes for the 0-1 Case

For the first step, the simplex method with the upper bound

technique is used to find x(1). Methods 1 and 2 of the original

procedures do not require that either x or the corresponding

rounded solution satisfy all of the constraints (2) and (3) that are

not binding at x(l) Therefore, an interior path found by

considering all the constraints rather than only those that are

binding at x( 1 ) should be more effective in Phase 2. The following

two methods drawn from [7] give piecewise linear interior paths.

%8
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The first method, which will be denoted as la, generates the

piecewise linear path by obtaining the parametric solution to the

linear program:

max r,

subject to:

n
E a x +Ar b (i 1,2,
j=liix+

n
c cx. = Z

j=l

* x. 1
X.

(j 1,2, . .,n)
x 0

.' jj

.V "r > 0

as Z is decreased from its value at ,l(), and then deleting r from

the parametric solution. This method stops when max r reaches its

largest value, and the corresponding solution for x is x

The second method, 2a, obtains the breakpoints of the piecewise

linear path as the basic feasible solutions (after deleting r)

generated in the process of solving the following problem:

max r,

subject to:

9



n
a..x + Air C b 1,2,

xj

(j = 1,2, . .,n)
x 0

r 0

starting with the initial solution x( ) . The solution for x that

maximizes r is x(2) .

For either method, Ai can be one of the following:

A, = 1/2 Z Jaijj (i)

n 2 1/2 1/2
, A, = 1/2 (T 3aii) N (ii)

j=1I

N 2 1/2
A, = ( E a i) (iii)j=1

where B is the set of basic variables from among fx 1 ,x 2 , • .,xn} in

x( I) and N is the number of elements in B.

*An alternative to Methods la and 2a would be to use the linear

path between x(1) and x(2 ) instead of the piecewise linear path for

initiating the search for a feasible solution. Since both methods

obtain the same x(2 ) , the quicker Method 2a should he used. Using

Method 2a to obtain x( 2 ) and then simply constructing the linear path

10
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between x( I ) and x(2) is labeled as Method 2b.

Method la requires a software package that includes parametric

programming as well as a considerable amount of execution time. The

available computer package for this study, Lindo, did not include

parametric programming. Considering that Methods 2a and 2b require

less time, they were chosen for Procedure 1. Test results in [7]

show that the first definition of Ai should be preferred to the

second one. Therefore the first and third definitions are used.

When Method 2a is used, the sequence of basic feasible solutions

generated is recorded and each successive pair is connected by a line

segment to form a piecewise linear path. For Method 2b, only the

line segment joining x(l) and x(2 ) is used for the search. This

completes

Phase 1.

b. Phase 2

(i) Original Procedures

The aim of this phase is to find a feasible 0-1 solution between

the two points, x( I) and x found in Phase 1. Method I for Phase

2 consists of moving continuously down the line segment from x( ) to

S(2) rounding to the nearest integer solution, until the rounded

solution is feasible. Any point on the line segment can be

represented as:

x = (1-a) x' + a x"

where 0 4 a 4 1. a is first set to 0; if the solution obtained by

* 11



rounding x is feasible, then Phase 2 terminates with this as the

desired feasible solution. If the solution obtained by rounding x is

not feasible, then a is increased to the next such that the resulting

x obtained would give a different rounded solution. Phase 2 ends

when a is greater than 1 or a feasible solution is obtained.

Method 2 differs from Method I in that a is increased by fixed

amounts and each time the nearby region is searched for a feasible

0-1 solution. For each value of a, the first step is to apply

scientific rounding to the components of x in order to identify the

nearest integer solution. If the rounded solution is not feasible,

then check to see if increasing or decreasing any variable by one

will decrease the "infeasibility" q. If there are no such variables,

then go to the next value of a. If there is exactly one such

variable, then make this change. If there is more than one variable

that can be changed to decrease the infeasibility q, then select the

one which will give the largest "improvement" p.

Using the notation, (y)+ = max {O,y1, two alternative

definitions of the "infeasibility" q are the following:

m n

(i) q = Z ( a1jx. - b)+
i=1 j=1

which is the sum of the Euclidean distances between x and each of the

violated constraining hyperplanes;

n

(ii) q =max icl . .,mj Y {aij xj -bil

which is the maximum of the Euclidean distances between x and the

12



violated constraining hyperplanes.

Three alternative definitions of the "improvement" p are the

following:

(i) p = -Aq,

where Aq is the change in q resulting from the change in the variable

xj;

(ii) p = cjAxj / (-Aq),

where Ax. is the change in xj being made;

(iii) p = -Aq + ci Ax

where c! is the normalized value of cj.

The first definition of p is a natural measure for the

"improvement" in infeasibility obtained by changing the value of a

variable xj, but it does not take into account the change in the

value of the objective function. The second definition of p does

take this into account by selecting the change that increases the

objective function the most per unit decrease in q. Therefore, when

the feasible solution is reached, the objective function value will

tend to be relatively large. The third definition is similar to the

first one except for an added term that also considers the effect on

the objective function. This definition encourages large moves

toward the most attractive portion of the feasible region.

13



With alternative definitions of p and q, different criteria can

be found for choosing the variable to be changed. Using the notation

in (16,18], some of these criteria are as follows:

Criterion A: first definiton of p, first definition of q

Criterion B: first definition of p, second definition of q

Criterion C: seconi definition of p, first definition of q

Criterion D: second definition of p, second definition of q

Criterion E: third definition of p, first definition of q

Criterion S: first definition of q. This Is a streamlined

approach. As soon as a possible change that yields

an improvement is found, it is implemented without

finding and comparing all the other improving
w.

changes.

Criteria A and B are based on the measurement of the infeasibility

and they do not consider the change in the objective function. When

the original procedures were tested in [18] the results showed that

Criterion A was generally better than B. Since these two criteria

differ only in their definition of q, this suggests that the first

definition of q is superior to the second. For this reason,

Criterion C should be preferred to D. Further testing with the

original procedures (18] has been done to try to distinguish between

the four remaining criteria, A, C, E and S. However, the main

conclusion is that even though large differences can occur on

Individual problems, the choice of a particular criterion does not

have a strong effect on the average performance of the heuristic

14
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procedure in the long run.

Method 3 is a combination of Methods I and 2. As in Method

1, a is increased at each iteration by the minumum amount required to

obtain a different rounded solution. However, rather than only

checking this rou,'ied solution for feasibility, the nearby region is

also explored as in Method 2.

(ii) Changes for the 0-1 Case

In the present procedure, Method 3 with Criterion A has been used

to find a feasible 0-1 solution between the two points, x ( 1 ) and x (2 )

found ia Phase 1. In this case, the components of x( 1 ) and x( 2 ) are

betw en 0 and 1 and the entire path between them generated by Method

2a or 2b of Phase 1 also has this property, so every rounded solution

along this path is a 0-1 solution. If Method 2a had been used in

Phase 1, the first iteration for Phase 2 starts with x' as x( l ) and x"

as the first basic feasible solution in finding x (2 ) . The search is

initiated from the line segment between these two points. If a

feasible solution is found, Phase 2 ends, but if a feasible solution

is not found, the search is continued from the next line segment,

which is the line joining the first and second basic feasible

solutions obtained in finding x If no feasible solution is found

on this line segment move to the next one, etc., until a feasible

solution is found. Method 2b of Phase I yields just a single line

segment for Phase 2. Certain adjustments have been made for the 0-1

case in different steps of Method 3. These are as follows. Every

integer solution considered now is required to be binary. Therefore,

when Step 6 of Methods 2 and 3 in [161 determines in which direction

15



each variable should be changed in order to decrease the

infeasibility, the change would be considered now only if it would

result in a 0-1 solution.

Phase 2 ends as soon as a feasible solution is found. There is

no guarantee, in general, that this will occur.

c. Phase 3

(i) Original Procedures

Phase 3 starts with the feasible solution found in Phase 2 and

then tries to improve on it. This was initially done by alternating

two modes. The first mode tries to increase the objective function

value by increasing or decreasing the value of a single variable by

one, at the same time keeping the solution feasible. Two alternative

methods are considered for this mode. When determining how much each

variable can be changed in the favorable direction, Method I imposes

integer restrictions on these quantities, whereas Method 2 does

not. Test results in [181 suggested that Method I is better than

Method 2. Therefore, since its relative appeal is even stronger in

the 0-1 integer programming case, it was chosen for the present

procedures.

(ii) a. Changes for the 0-1 Case in the First Mode

In Step I of Part II in [16], d f = si / Jaijj where si is the

slack for constraint i. For the 0-I case, dii is set to 0 when

ci > 0 and xi = 1.

The second mode tries to obtain better feasible solutions by

16
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changing two variables simultaneously.

(ii) b. Changes for the 0-1 Case in the Second Mode

In Step 1 of Part IV, in addition to checking the sign of xj + 6j,

a check is made whether xj + 6 I before permitting the change 6.

The other change in this part is that once a change is made on a

variable in the favorable direction, it is never considered again, i.e.,

the loop which goes back to Step I from Step 3 is removed. In Step 6

of Part V and Part VI, Uk is set to 1. In Part VII, after once

considering a variable for change in the direction which would

decrease the objective function value, it is never considered again,

i.e., the loop which goes back to Step 1 from Step 5 is removed.

.The two modes above are applied alternately until no better

solution is found. This approach constitutes the first part of the

method that has been used in the present procedures.

(iii) Other Methods from Original Procedures

'Three other methods have been considered, namely, Methods 3, 4

and 5 from [18). Method 3 starts with just the first mode of search

described above before undertaking a new mode of search. Methods 4

and 5 complete Method I of Phase 3 (both modes of search) before they

start the additional search for further improvement. In these

methods, the new modes of search involve changing many variables in

order to reach a better solution. It is computationally infeasible

for large problems to consider all ways of changing several variables

simultaneously. Therefore, methods that will efficiently consider

17



only promising ways of changing many variables are needed. Let x(L )

denote the current best feasible solution and z(L) its objective

function value. All three methods are initiated by adding a new

constraint, cx ) bo0 where b0 = z (L) + 1, to the problem. This makes

x (L) infeasible and reduces the feasible region so that it only

contains better feasible solutions. In all of the methods, one

begins by moving from x(L ) through a sequence of infeasible points

that try to progress to a better feasible solution.

Methods 3 and 4 go through n cycles, in the general integer

~ programming case, where each one begins by changing one of the n

variables in the favorable direction. The first step in each cycle

*gives a new solution which is not feasible. Then a procedure similar

to the one in Phase 2 is repeated. In other words, one tries to

decrease the "infeasibility", q, by making changes in the variable

which will give the best "improvement" p.

*Method 5 is similar to Method 4, but instead of n cycles, there

is only one. It starts with x(L), which now is infeasible because of

the new constraint, cx > bo .  It then follows a procedure similar to

the one in Phase 2 for finding a feasible solution. As adapted here,

each iteration consists of finding which variable would give the

largest "improvement" p according to Criterion A if the variable were

changed to its other binary value, and then making that change.

a Sometimes, largest p might be negative so this change will

Increase the infeasibility. Thus it might be necessary to move away

from the feasible region initially, in order to be able to eventually

find a better feasible solution. It is possible that a feasible

solution is never reached. Therefore, to avoid moving away from the

.18



feasible region indefinitely, an upper limit, 100 is imposed on the

number of iterations.

Both Method 3 and Method 4 require more than some multiple of

mn2 elementary operations, so that the running time grows rapidly

4" with the size of the problem. Furthermore, previous testing [18]

. suggests that Method 5 tends to do beter than Methods 3 and 4 in

reaching a better feasible solution that requires changing many

variables, apparently because of its drifting ability.

(iv) Changes for the 0-1 Case

Method 5 has been chosen for the present procedures. The only

*change from the description in [181 is that the only trial solutions

considered now are 0-1 solutions.

J.1

,

,
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2.2 Procedure 2

This procedure assumes (4), (6) and (7). It starts with all the

variables at 0, which is a feasible solution for (1) - (3). It then

tries to raise the most promising variables to 1. This is done by

finding how much each variable can be increased before it becomes

infeasible according to (1). In particular, let

{bi/ ai, if aij > 0

=+  , if a. 1 0

for i = 1,2, . .,m and j = 1,2, .,n,

and

R min K for j = 1,2, . .,n.
-~ i=1,2,..m

Then R indicates how much the variable xi can he increased before

violating (1). Now let

Range (xj) = [Ri] - (greatest integer < R) ,

for j = 1,2, . .,n.

If there are k or more variables with Range P k, then this means that

k of these variables can be set to 1 while retaining feasibility.

Because of (4), increasing any variable xj to I can only Increase

z(cj > 0) or leave it unchanged (cj = 0).

Each iteration begins by finding the largest integer k such that

20
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at least k variables have its Range > k. If there are exactly k

variables with Range > k, then set all of them to 1. If there are

more than k such variables, then set the k such variables with the

highest objective row coefficients to 1.

After setting k variables to 1, the right hand side is adjusted

in the following way. Let D be the set of indices of the k variables

which were just set to 1. Reset

n
bi = bi - Z a ixj for i = 1,2, . .,m.

j ED

New values are found for R and Range with the adjusted bi's. The

same procedure is repeated except for the variables which are already

at 1. These variables are not considered again. This part of the

procedure ends when Range is equal to 0 for all the variables. The

above process can be summarized as follows:

1. Set E=0.

2. Calculate Kij for i = 1,2, . .,m and j = 1,2, . .,n.
'

3. Calculate Rj for j = 1,2, . .,n.

4. Calculate Range(xj) for j = 1,2, . .,n.

5. Determine the largest integer k such that there are k or more

variables with Range > k, and add the variables with

Range > k to the set E.

6. If k = 0, then go to step 8. Otherwise, if E has exactly k

elements, then set all of them to 1; if E has more than k

elements, then just set k variables in E with the highest

objective row coefficients to 1.
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7. Adjust the right hand side and return to step 2.

8. Stop.

The above process constitutes the first part of this

procedure. The second part starts with the feasible solution

obtained from the first part. It then tries to improve on it.

Method 5 of Procedure I is used here. Before starting Method 5, the

problem is normalized. Therefore, Procedure 2 differs from Procedure

I in that Phases I and 2 of Procedure I is replaced by the first part

of Procedure 2 for finding an initial, good feasible solution.

2 2
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2.3 Procedure 3

Procedure 3 is similar to Procedure 2 in that it tries to find a

feasible solution in the first part and then adopts Method 5 of

Procedure I to find a better feasible solution in the second part.

Both procedures assume that bi > 0 for i = 1, . .,m and cj > 0 for

j = 1,2, . .,n, whereas Procedure 3 also assumes that aij > 0 for

i = 1,2, . .,m and j = 1,2, . .,n. The first part of Procedure 3

also starts with all variables at 0. The most promising variables to

be set to I are found in a slightly different manner. R is found in

the same way as before. Now a new quantity

P. = ciRj

Sis calculated for each variable. This is a measure of how

% "profitable" (increase in the objective function) each variable can

be if it alone were to be increased as much as (1) permits. In

actuality, any variable that is increased would be increased to 1.

It is desirable to choose the variables to be increased in a way that

will allow further improvements. Therefore, it is necessary to

consider the coefficients of each variable in the functional

constraints (1). Choosing a variable to increase that has a

relatively small sum of these coefficients should tend to leave

relatively good opportunities for further improvements by then

increasing other variables. Let

m
IE ai , for j = 1,2, . .,n.
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(If the coefficients of variables in different constraints differ

significantly, then (1) needs to be normalized as shown at the end of

Section 1.1 in order for A to make sense in the rest of the

procedure.) The measure which determines which variable to set to 1

is

Ratio(xj) = Pj / Aj, for j = 1,2, . .,n.

It is desirable that P be as high as possible and Aj as low as

possible. When A1 is 0, set Ratio (xj) = + - . If Pj is 0, then set

Ratio (xi) = 0. The variable maximizing Ratio is then set to 1.

This completes one iteration. To start the next iteration, the right

ha.id side is adjusted by resetting

bi= bi - aij xjl for i = 1,2, . .,m and J = 1,2, . .

for purposes of recalculating the R1 . Once a variable is set to 1,

it is never considered again and so is never changed to 0 during this

part of Procedure 3. The iterations for this part end when none of

the remaining variables can be increased to one while retaining

feasibility. The above process can be summarized as follows:

1 .l

1. Calculate R for j = 1,2, . .,n.

2. Calculate P1 for j = 1,2, . .,n.

3. Calculate A for(j = 1,2, . .,n.

4. Calculate Ratio (xj) for j = 1,2, . .,n.
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5. Determine the variable xk which maximizes Ratio. If Ratio

(xk) = 0, then go to step 7; otherwise, set xk = .

6. Adjust the right hand side and return to Step 1.

7. Stop.

The second part of the procedure starts with the final feasible

solution from the first part and improves on it by Method 5 of

Procedure 1.

if

4
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Chapter 3

Computational Experience

In order to evaluate and compare the three procedures deqcribed

in Chapter 2, Pascal programs were written for each and run on a

DEC20 system at Stanford University. The procedures were tested on

73 problems. Fifty seven of these were generated randomly, where 8

of these were of Type 1, 16 were of Type II, 21 were of Type II' and

11 were of Type 1I1. The types are as described in Table I, where

the parameters are integers randomly generated for the indicated

intervals.

Table I

DESCRIPTION OF THE RANDOMLY GENERATED TEST PROBLEMS

Problem Type
Parameter

i it ' III

Scj [-20,80 1 [ 0,100 1 [ 0,100 1 [0,100i

aij [-40,60 [ [ 0,100 ] [ 0,100 1 [0,1 1

'  50,200] [400,16001 [300,1200] 1

Xj 0-1 0-1 0-1 0-1

Letting m be the number of functional constraints and n the

number of variables, eight problems of each type have m x n = 15x15,

and the other are larger (such as 15x30, 30x15, 30x30, 60x30, 60x60,

60x120, 60x300). For the problems with n > 300, the range of the

right hand side was changed to [4000,80001. Seventeen of the problems

tested were standard test problems in the literature--Haldi's IBM

problems (#4 and #6) and nine Allocation Problems reproduced by
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Trauth and Woolsey [32], four problems given by Petersen 1231, two

problems given by Senju and Toyoda [261, and four problems from

Hillier [17]. These problems are denoted in the tables by Haldi, A,

Pet, ST, and H respectively.

Table II presents a comparison of two definitions of Ai' (i)

and (iii), and two Phase I methods. The last column of Table II

shows the difference in the quality of the final solution obtained

for each of these eight problems with each method in Phase I and each

of the definitions of A,. The measure of quality used throughout

this chapter is the "normalized deviation" from the optimal solution

x(opt) where the normalized deviation from optimality for a solution

x is defined as

cx (opt) cx

c.

j=l J

where x(opt) has been obtained by Lindo. The geometrical

interpretation of this quantity is that it is the Euclidean distance

from x to the hyperplane ex = cx
( op t )

The times given throughout this chapter are CPU times in

seconds.

*In Phase I of Procedure 1, Lindo has been used on the DEC20

System to obtain x(l) and x(2) , as well as the basic feasible

solutions generated in moving from x(t) to *(2). The times given

under Undo in each table are the times used by Undo to obtain K(M)

and x(2). Two definitions of A,, (i) and (iii), have been

27
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Table 11

COMPARISON OF TWO DEFINITIONS OF A,, Ci) AND (iii)

AND TWO PHASE I METHODS

Problem type Normalized
m 11 & number A Method CPU time Dev.

15 15 1-1 Wi 2& 6.42 0.109

15 15 1-1 (1) 2b 1.87 0.109
15 15 1-1 (iii) 2a 7.17 0.109
15 15 I-1 (1ii) 2b 1.73 0.109
15 15 1-2 Wi 2a 2.99 0

1 15 15 1-2 (i) 2b 1.95 0
%15 15 1-2 (iii) 2a 7.38 0

15 15 1-2 (iii) 2b 2.13 0
15 15 1-3 (i) 2a 12.9 0.248
15 15 1-3 (i) 2b 6.14 0.248
15 15 1-3 (111) 2a 14.74 0.248
15 15 1-3 Cii1) 2b 6.52 0.248
15 15 1-4 (i) 2a 13.38 0.108
15 15 1-4 (1) 2b 4.35 0.108

15 15 1-4 (iii) 2a 12.49 0.108
15 15 1-4 (ii1) 2b 3.12 0.108
15 15 1-5 (i) 2a 15.49 0

15 15 1-5 (i) 2b 2.83 0

15 15 1-5 (iii) 2a 14.79 0
15 15 1-5 (iii) 2b 2.67 0
15 15 1-6 (i) 2a 15.70 0.363

15 15 1-6 (i) 2b 2.08 0.363
15 15 1-6 (iii) 2a 15.93 0.363
15 15 1-6 (iii) 2b 1.99 0.363
15 15 1-7 (i) 2a 16.80 0.063
15 15 1-7 (i) 2b 1.96 0.063
15 15 1-7 (111) 2a 15.77 0.063
15 15 1-7 Cii1) 2b 2.34 0.063
15 15 1-8 Wi 2a 12.52 0.284
15 15 1-8 (i) 2b 2.51 0.284
15 15 1-8 (iii) 2a 12.48 0.284
15 15 1-8 (11i) 2b 3.38 0.284

Average 0.147
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tested on eight Type I problems. Even though the optimal value of r

and the corresponding values of x(2 ) were different for each

definition of Ai, the eventual solutions obtained by Procedure 1 were

exactly the same for each problem. Therefore, only one definition

of Ai was used in the rest of the testing process. The one chosen

was the first definition (i), since it requires less computational

effort. On the pr3blems tested, Method 2b has been much faster and

has given the same final solution from Procedure I as Method 2a, as

suggested by Table II, so only Method 2b was used on the subsequent

problems.

However, in general, Methods 2a and 2b do not necessarily lead

to the same final solution. Furthermore, on problems where it is

difficult to find a feasible solution in Phase 2, the chances of

being successful should be better with Method 2a than 2b. Therefore,

one can use Method 2a where a feasible solution is not found by

method 2b. One explanation for the two methods giving the same final

solution on the first eight test problems might be that in the 0-1

case, the basic feasible solutions obtained in getting x (2) might not

be very different from x(2 ) when rounded. Therefore, rounded

solutions used as the starting points for the Phase 2 searches for a

feasible solution might not be very different for the two Phase I

methods. One should also add that, in the general integer

programming case, the situation would be different.

The three procedures have been compared according to the quality

of their final solutions and their running times. A summary of the

performance of these procedures Is given in Tables [it, IV, V and

VI. Procedures 1,2, and 3 were run on 16 Type 11 problems and Table
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Ill shows the resulting average normalized deviation from optimality

and execution time for each problem, as well as the overall averages

and the percentage of the problems for which an optimal solution is

found. Even though Procedure 2 seems to be faster, Table Ill

strongly suggests that its solutions tend to be inferior to those

from Procedures I and 3 for this type of problem. Procedure I

obtained the optimal solution 25% of the time, as compared to 31.3%

for Procedure 3. Even though these are not very high percentages,

the average normalized deviation from optimality in both cases was

very low, 0.07 for Procedure I and 0.06 for Procedure 3. This

suggests that solutions obtained by these procedures are, in general,

very close to optimal. When the best solution for all three

procedures were taken, the resulting solution was optimal 50% of the

time. Therefore, another way of finding an approximate solution to a

problem would be to run all three procedures on the problem and take

the best solution obtained.

Another situation to be tested is the case where the problems

have smaller feasible regions. Type II' problems are a modified form

of Type II problems, where the range of the right hand side has been

scaled down.

The three procedures were run on 18 Type II' problems, and the

results are shown in Table IV. In comparison to Table [II, the

percentage of solutions that are optimal has actually increased from

25% to 27.8% in the case of Procedure 1. For this procedure, there

is a very small increase in the average normalized deviation from

optimality, from 0.07 to 0.08. The average normalized deviation from

optimality for Procedure 3 is close to this, 0.09, but the percentage
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of optimal solutions has dropped from 31.3% to 11% for the Type II'

problems. Procedure 2 has again done worse than these two. The

results suggest that Procedure 3, in general, finds good approximate

solutions for the problems, but Procedure I is more consistent in

finding optimal solutions. It also suggests that Procedure I is not

affected by the size of the feasible region for a problem. However,

considerably more testing would be needed to draw statistically

significant conclusions.

Procedure 3 cannot be used on Type I problems, so only Type II,

II' and III problems can be used for comparing all three procedures.

The results for Type III problems are given in Table V. The H series

from Hillier [17] also are Type III problems. Contrary to the

previous test results, Procedure 2 seems to do very well for this

-N type of problem since it found the optimal solutions for 66.7% of the

Type III problems. The other two procedures did quite well for this

type of problems as well, namely, 40% and 26.7% for Procedures I and

'V.i 3, respectively. The average normalized deviation from optimality

was very small for all three procedures.

The reason for Procedure 2 doing so well for Type III problems

N and so poorly on Type II problems apparently is that Procedure 2

tries to assign the value of I to as many variables as possible.

This strategy does not allow for further changes in the other

Vvariables. In Type III problems, only very few of the variables

equal 1 in an optimal solution, so the Procedure 2 strategy works

very well.

Comparing Tables II, I1, IV and V, it can be deduced that all

three procedures give better quality results on Type Ill problems.
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Procedure I seems to be more consistent than the others in its

quality of results for different types of problems.

The growth of execution time for each procedure on larger

problems (n > 15) can be seen in Tables IV and V. Procedures 2 and 3

solved problems with n 4 120 in less than 10 seconds for all but one

problem. The execution times for Procedure 1 tend to be considerably

larger, but it still was less than 2 minutes for a problem with

n = 120. In general, for the three problems with n ) 300 the

execution time did not increase rapidly (if at all) as n was

increased. Because of the size of these problems, optimal solutions

were not obtained. Therefore, no normalized deviations are given for

-these problems.

- Table VI shows the changes in the objective function value (Z)

in different parts of the three procedures. Z, is the objective

function value at the end of Phase 2 for Procedure 1. In Procedures

2 and 3, it is the objective function value at the end of the first

part of these procedures, before applying Method 5 of Phase 3. Using

the labeling of parts for Method 5 given in [16,181, Z2, Z4 , Z 5, Z6

and Z7 are the objective function values at the end of parts 2,4,5,6

and 7, respectively, in the last iteration (if any) where an

improvement was obtained in that part. Z9 corresponds to theJ.

objective function value obtained at the end of the Phase 2 type of

search in Method 5. Table VI shows that the solutions were very

rarely improved in parts 4,5,6 and 7, whereas the Phase 2 type of

search of Method 5 improved the results more than 25% of the time.

More improvements were made on Z, in Procedures I and 3 than in

Procedure 2. This strengthens the argument that once variables are
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set to I in Procedure 2, they do not readily allow further

improvements. Procedure 3 in its present form gives very good

solutions and is very fast. Furthermore, if parts 2-7 of Method 5

are removed, the algorithm will become much faster. Oi average, this

should not decrease the quality of the results significantly. For

all three procedures, the quality of the final solutions perhaps can

be improved by increasing the number of iterations allowed in Phase 3

or by trying the second part of Method 4 (without Method 1) in Phase

3.

Because all three procedures continue with the identical method

(Method 5 of Phase 3) after obtaining ZI, the Z, columns of Table VI

provide a direct comparison of the parts that differ. This

comparison again suggests that Procedure 2 is quite inferior to the

others for Type II and It' problems, but probably the best for Type

III problems, where Procedure I and 3 perform about the same for all

the types.

Table VII gives test results on some standard problems from the

literature. The A series problems are single constraint allocation

problems. They were designed to test the sensitivity of algorithms

to small changes in the right hand side of the problem. Therefore,

the nine problems are the same except for their right hand sides.

For two of these problems, A-5 and A-9, Lindo had found the optimal

integer solution as x( I ), so Procedure I was not tested on these.

The best solution obtained by the three procedures was optimal in

five out of the nine problems. Two Haldi problems were only tested

* on Procedure I because the right hand side and the A matrix have

negative elements. Even though Procedure I found the closest
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possible approximate solution to the optimal solution, the normalized

deviation from optimality is large because the objective row

coefficients are small (all I's). In the Pet and ST series, even

though the solutions obtained were not optimal, the best solutions

obtained from all three procedures have small normalized deviations

from optimality.

Table VIII give a comparison of the best solution obtained by

all three procedures (fourth column) with the solution obtained by

the pivot and complement algorithm developed by Balas and Martin [2].

Table VIII

COMPARISON WITH BALAS-MARTIN ALGORITHM

Best Solution Balas-Martin

Problem m n

Iopt 2 ne lopt - neul

I opt! Izopti

PET-4 10 20 0.017 0

PET-5 10 28 0.003 0

PET-6 5 39 0.240 0.0028

PET-7 5 50 0.005 0.0023

ST A 30 60 0.021 0

ST B 30 60 0.010 0

ie
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Chapter 4

Conclusions

A heuristic algorithm aims at obtaining a very good feasible

solution relatively quickily. Although the primary motivation of the

present algorithms was to provide an efficient way of dealing with

the frequently encountered integer programming problems that are

beyond the computational capability of exact algorithms, heuristic

algorithms also can be useful on smaller problems by providing an

advanced starting solution to accelerate an exact algorithm.

This thesis presents three heuristic procedures for certain

classes of Binary Integer Programming problems. The construction of

the procedures was given in Chapter 2. These procedures can be used

to efficiently obtain a very good (but not necessarily optimal)

solution for problems that are too large to be solved exactly. In

fact, test proablems with up to 500 variables have been successfully

run with oTnly modest exception times. For smaller problems, they can

be used to obtain a good starting solution for the exact algorithm.

The procedures were tested on different types of problems to

evaluate their effectiveness and efficiency, as reported in Chapter

3. The procedures have tended to perform differently for different

types of problems. Procedure 2 tends to give better quality

solutions for Type [TI problems, while quite consistently doing worse

than the other two for Type II problems. Even though Procedures 1

and 3 seemed to have similar performances on most types of prohlems,

Procedure I seemed to be slightly superior to Procedure 3 on the

average regarding Lhe quality of the final solution. However,

41
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Procedure I is somewhat slower than the other two. More testing

needs to be done to obtain statistically significant comparisons.

Solving a problem by all three procedures and taking the best

solution is a promising method. The execution time for all three of

these procedures should be relatively insignificant, compared to the

time needed by an exact algorithm for large problems.

Parts 4 to 7 of Phase 3 (used in all three procedures) very

rarely improved the results. Therefore, these parts can be deleted

from this phase, which will significantly decrease execution time.

In Phase I of Procedure 1, it appears that the first definition

of Ai and Method 2b are appropriate choices.

Method RI-R3-5 of [181 had given very powerful results. This is

another combination of methods that can be tried for the 0-i integer

programming case. Only six test problems were available for

comparing Balas and Martin's pivot and complement algorithm with

these three procedures, but the limited results strongly suggest that

the pivot and complement algorithm is superior in the quality of the

solutions obtained. More testing needs to be done for a definitive

.comparison of effectiveness on different types of problems. No

comparison of the execution times was made since testing was done on

different computers and in different programming languages.

One important area for future research would be to extend these

heuristic algorithms to mixed integer programming.
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APPENDIX

This appendix presents the Pascal code for Procedure 1. The labeling

of different parts and phases are in accordance with [16,18).
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(* n +rior paint.-*

J*X- 1

TY- P-A y :1- - L

S - ,YI,.7,:1 .,7 F.:T -LEE;

7L' 1' : = Z Y.I 1..n 1 . 0. F R-AL;

L~ L

•' -C L S L A,3 " Y :1. . D 2S -  ;-- L

".. - - .- - "

.7 . Y :1,, 3 " - IT -G

VxL, LTA: : L 7 X;
V ,-- : -- ' T

/ X D : -" L" T ! XT

" 3 . '.- :' 3''S

P ;::u . , 3 ::'-;, ,g -,S '4 : C VA ':.xV.LS;I

TI -E Y J- ; ,S T4 , " %r SL

L X, L" E, : I--,T ',.'S 7; - S L Li

-- : ., / -l: - - ,
X, X XF,,tL,.-;'E LT- L'. S S

;~~~~~~~ VL. '''-,, I L;- 'J,,,, ' ZZ , FNOM, N,,C,

SC'J T 7 j'i p ,J, , '"'X ', :cJV . :1 'I '-3 t;
C .,. .SS ' t . _ _0 H 1S I TI R.. f -I !' !-F S 1 MPROV-FD,

" ' KJ, . :, " " 0-, "S "o ,Z: - T: E- ' , -N^,P Z- -T 2,E"! 3,E ND T4,

4 43

t.-"'", :.", , L 'J r

V J., L

LT C.
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E L L (N = I L , 'E )

FO J:=L T N

FG. RCW:=I TO ' lG
5 G i "i

F3; CCL:=I T
S EJ:;

R A 0 LN( N ci L E) ;
EN: ;

F C I:=1 TO "I 0

END;
R E A 0 L N =NL E);
AD LN(CIN.FILE) ;

E N -0;
(* zd th so~*ir c* 11_ r-- x t io *

CCE'uP I 0X1(V. ZL L:L.' XI:CCLS);
V R J:'TE ;

; E L N :'J': LE., ZL:

FC J:=1 T: N :1
= E ( :% IL =-, xl:J ]) ;

' L N :'4, L -- ;

-( zd :-si Fep Qi" o .1 ut jr ;ttim- X2, stz-ting from Xl *)
o T t1in.2s is the n L r of I f = sD I: so1,.ticns reid . X F *)

(* is th'e -trix f :rr.?. ty ell a b si: fFSibI' solutions to;ether.
P R 0C ED~ o  - 2:S L JV- X : P T V q X;V : -  T T L 1 14S:I'T FS

i: ol1LE r E0;': C
A 1IL NC'CEGCI'UL)) .O

E -L ;,

TOTLI;-3:=z

C* ,"ekn -th - ?z 5 ry : ist- n'.s tcccrdin; to how m: y bsic

PRCC U, V= J T(T' TLJ";: T(T- T - I: CCLS; X S P LM-7:X ;NUM :TNTE R
VAF X2:C0L3);

VAR J: !T -- ;
T Em PIrT IV I C C LS;
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3E G:t

T =c : 1-" J" T, q [J

-"J 1 J: "-u (X£0J]);

C K'=T jc-;

i tT(OK) TW4N

E N;

(* tep 1 of P.nzz

P CoCE J E ST: '€-: L ::..)

D2CCEU_ STP (VA E '-CX: LS ;Xx.X?: CLS;-LIA:RE5L);

"(* 3 t x ( 1 - x + n x2

,-1; J: T

T E J ; F X 1:)xlJ: L F ZJ

r C f, '-: - 4

[ ~PR"COEZ.;P.- iT-P.# TE",X:2LS;V= -' Y: IyT:LS);

T* n~ + i i ruci o f x 4

F-3 J:--1 T ' .

V R J I Jt :7

74;
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(* Ste,; 4 of r"n: .

icE: r-$: VL:F,0IS; ' TPXA: LM TRX
x:'NTC .LS) ;

( : Fir, c t+.1 -- s 'Pc'< 'or ?--ch L -lity and C-,11p +.e thle inf e'- ibility

VAR I: :N T ES;R
GBEG:N

SU .. . .

C0 F, ~ TT 6.1 CAT IXA J XE

-- -:=H I I

23 j:=l T2 N:9
:0 :::: ?,43[: + (MAT IXA _1,J) * (EJ]) ;

E N;

S1 2'S.p t of :1 Fs~

U 7 PE ,: : TEc t(X: -C'LS ;'V , N.k :RLM T'TX; VAR F.STAR:COLS;
V' : EL X:: %7TC.L S C W S.' 3

S:C 0L S;

=CC, J: T

(* ropi te Sj fo- c *C

J- 2- T > 
) 

T -- I J
l j:=~2 '-XA ,]

Comp e znh.! rj: e: x. shou1 be i ncr as d i n ti. f vorab e *)

c* rec t on, *3

-( :J" > £ ) , ( > J] > 2) -

ELx:..-:

jLX SJ :, : ;

- - .: ( 3:; .J: > ) THE'
'.- 3 ."r := -.... ,J3 • Tt [ ]

E Z;

C' Stop 5 of p *

.RC - - t---'v -" ','. :S-" L. .S V -  " LX,Y : : NTC C LS ;

X:. T L .TvO:CZLSL'M."PEAL;

91! 46



(- Cnec. 1' the~ round T-o! jtic- is for;itl. . If it is f.asible, *)
(* ths :e -st az cu,-re rt .si l. solution, ote-wise go to step -

V-" ' J::,. :"'>
V jl

.F C3'' > 0) T E\

5 E G

=J1 - .
Y;:-: :=X .J ;

-J

END;

( * -,t e: o f :1 a- S

PRCCE%dE ST71CCX1 , :CLS;V' AL :EAL;V STP1 0 :OOLEAN)
a~ s :-t tn? v 7 lu2 o f ! 1:h ...... . gets the s:rzll ?st value that *)

V A , J:
T'1E:: :-L;

p ~ ~ ~ M L ~:1YD

T J:1 TC

.'- ( 1"J: =]:-x )j (" '

':' " :TT,:J: :=-c(x1:lj: - 0.5) / (X?.:J: - Xl1J)lO. OO01

EL SE

T ":J: :((]. - X5-J:) i x?.J- yr)) OO301

, >:

' -

- . ,-, ..- - . - j

711 V L LL a;

- [, -; c

71 :-' (Vt :; ; ~AWv L :E~;~ T:0s
Cr L
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z3; J:=1 T N CO

I~~~ j ~3~ : < u:)~~

L: =Ll ;

N ;

ST 1 T
EN;

(* Th? st- reo I--cin; st.c 7 f Oh m , when this Dhase is used *)

(* in r'_th3z 3 of Th . -

V-!: K::'J-:51: V , Sl v : IL S T'-:C01L--;D-LX IN1 LS

VAR ,TJ::T-%
S L CLS;

n X h. v F- F h ,. A,

FR T: T N "c

J:='- --,',

: i [C::'-r'' = -" ) "EN
P= ::

E E G-

-:~~F ' 7 T3 j N .,e ] T ;

X':' j':,;

C 'rH:N

(* S

-" ~V2,. SL'..:ZBEL;A]-': S;'-X: \TCLS);
- ~VAR J:'i.T 1 --U

-. : CCL -t

7 J-i - J

48
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'. .- - :, . J = . . T - ,

• ',' --- - ,. , .
MAX=:=:J] ;j T

END;E N:

( step of Pn s ?)

F.C'E-U' 3T 7n (VA K : --7E ;VA X,:-LX:INTCOLS;VBR QROWS:ROWS;

: : 1_ -- ( L - x : SV,.s. ?(t =s t v 0 x cli 3m
A R 1:'':T E~

E E IN

S -- :-I TC' :i T:

"" (* S - " -? 2

z:..' ,

7 (LJ?: S U TLX)

"K : :LT"T : : ; -

EN Z

L < -- 7-t:

449
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T, EGM 7

E C Z. :

* E N 0 ';

( * P r i t t n. r s u!I t.- i n e f il1s c zi 119d O ut fi Ie

VE T E S

RF' J: : TC N Z
7 : ( .7JEC J ) ;

I TE L ', (0 "j'- L ,: ;

;~ T= L' , (0 t, L =: L

EN N;

E D ;
(* Sor t t- :r ra~~ rc oF v ei''s acccr in; to their *

( c: j- z v r c s ts r-, 1csost tIo s M, r-' 1' est

-
L 37

;: ' ' L FL 1 L [LS];
p r r U D:. E--9 1 %;

0,7,(* St.p j of :1 rt 1 iT :r-.

pF, 3g:DL, -.Tl1(V '  X,'X: " 7T'L5);

c (* S t e = s1 ft./ - - , ;: . _E ,

*.,S.R J*=1 T. ,,'

END;

(* Scrt eO , n3 o £ .: .-r- C'' jrnc' s fry .- r. tD "m 1!st *)

- . z C.. . C . .S, L ' '. - T: 'I T , " ,

VA F ',J- 1 ,1 U"T S L L - 'P

50
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3E S:.
-C 1 T T -1 ) 

CS I,.T 2:(C %- 1) TC LEN'STT '30
:- L ST C 2j'.T II < L:ST'S" LLST! TAC.N

S. 1 " 7 L * "LT -- ST3 T
C C~' U~ 1:2T;S , ," (~ LS'. C U';.I 2,LI ST[S'LLESTJ ) ;

(* StepZ of =art 1 cf Ph-s? 3

7KC 3' - 1 2 1 1)- ;-_'-' OJ WT 1P ., -LT I : ,r. r OLS V R NO INT E"ER)

VE) E : .,~ .BE .S ,
(s Orr the nor-zaro ojectiv _ row coefficients

FO J:= T1 N 3
-= ( j.] j, < C) Tw=-

ELSE

'.-J' j. : ]

-' (* T e v or c le c 'or vz iebl?s k th cj > ', is set to 1 *)
. a :z -_- -'S :j < S s.2 o -1

(w -: I - f -f

"- ~~ ~ -L:I ^ty

""'+ , :: Z ('- J-" ..J >j < " ) + --_"'

V ELS;

" ...... .. ..... .. ; . ' X : C L )

I. . V , j [ . : -- ;

%, ' S --

: ,' .-: = -. . . .j91r.', 3



VAR L-I,J:r.T=-G=-R
A, T P.E L

5 E 1. .1

L:= 1 T2 Ci 0

J' L=') L 3

((JC :~~wcj7 2) AND CXJ) =0) CC? C(O BJR^VWEJ)>O)

LS

1= (T>'-) THE14

A T R XIJJ<2) Tw=N

~ (((~iC~ . T~r~r'J'2))THEN

ctr ol . rt o of ~

PRGCE=:JP-' OA T( 2 : %7 E;: 7 -I:-L;V NEWC:TNT CCLS 0: LMATRIXol

S ~ L, J Tu:h-

r) n

" . J

J: :

E N D:

q 52



~~~P 3C SL;' U - T 2 ('C:-',T3MV- '  .?4E :-L ; -,x- P , -W':I NTC CLS ;

a' Conjtj -j for v-;r -E:l'- with non-z.?ro objective row coef 4 icients
V-A R L, J : r. T :E

F 0 L:1 T D

J :=CE'L]

EN:;

(* Ste; : of Dart 2 cf Dh-Fse 3
P0O:I,: .23(V- T- -... "CCS ,K: F R; V P S POWS;OJROW INTCCL

e. ~MT:':::L":T :X;V -' x:rc.L:);

i(* O~ack t - si;r of :k*

EL S
I* :J oA:K > ) As':: .TX cx K]=I1 ) THEN

E N

FK :=j, Z ()' =;T cN

FR L:O 12 T 0

T E

:% C LS; IP S:RS

V 7X,K, = [ -T; -77CLS V K IN

v EE-

r, Fin th& m.xi .. r .-me S?" K to tha index of tha mzximum r *

V A 2 AP, I ;

E L =f T O E

G: C 2 :,4]

=:J;

T j (" ..- ., , , "J ,.,'" T- XAY

L'



EN 0;

C' Fart "-" of Phase )

OC=:IU -  P A- T : ' , :'J'rE S S7; " , eJq , :I ,T COL S;V AP N -WR,R PR IME: M AT I Y

(* Corpute Pik z -d jk
V, L, JrKM: N _ - ;

6' GI;

.0 R J:=1 T3 N-1 Z0
-= GIN

L: 3~ ' J3
= K:=J-1I TO 4.1: Do

-CI.

3 V I-- TO J := iV S 1 ^N* (-1)
t Z.: L,,' := J I: C IV I S I C N- .O0 C'l0 0 ;

EN

( * ST. p of :.--t L o f, : S ""*

C* C %a sL

,'. . :. i : I TC . .
a- T : "-. ' - "

S R (S ''~l < ) Tw_-

£ * =L : =L+I ;

E::';

1; 3 :-; 1 of :-' rt ' of ? ; _ ..

4J V S T .- B := U -_

P, A .

a'a

1154



Ste a 3 of t 4 o-f 3

P R CE'j-E 5 T 3(fLrC:: c LS;V-P X:INTCOLS;VAR S:RCWS; SPRIME:ROWS,
. ,.PT:- 4 , 'N' Z 7, T - 1 : CL Nh)

V-: f. TZ 7 7A

-LSE

f.. '

V , ;

- -" -

L' :'T C4.:P j q WS

: "~ : :J:>:.K: > 3) " -

C.K] = -Y K

K L T~ Y
EL G' : -: .-4 ,K

S I
LE,1

5- ".- 55
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T =:UINC(R)

LLS

74

Stj 4 f Pe'rt of :h?se 73

Cw Co pp j Lk cn.- L/k

T' :R 7

C U I.

F:~V R I=1 (C)

A ELSS

V:2+ ;

CCZ(,I' >-T.1

(*~~~ ~~ StS Z ~~t5ofT~-

C' C~~ck i Lk 7

-2 L S

LIP (''C: u 7H: X
L >56

L I



P ;T, ( 1. T-- X , ,SLL:;. -

(* Step .f P rt 5 o h s 7

;"' T j:L7A :Y;VA y ;, :TC LS'.;V S D :NT GER);

( Kc tn si r. of C- in ore;- to select the improved solutior *)

E E :NBE i (--j:,: > ) A..: (x<"<1) T-FN

P:- ::=I i '- DC

,'e. "_-:~. - - -PU.

, *' -. -U,
F 70

"=~(~ 3e ( "f ! J - S of :<: T .,

?~~ <(K :=J-:L"

.:" ", ": -" T nT i-

S(* C e i : f -rt -- f

L: y TL P X;VIP LJ 1-

(~t L.,()T
4: 57 ;"r

• ".' (5 L' <= ' E L S -E"

J T - : 5: T . -
Et.. L

i ~~ ~~~~~~ SA -T':2-:- t,''; -; JO~'T cV I TSKh Pv'TI)

',#' (* ""eC, t - -. , ,' 57
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( * £'t e p o Pr t 6 o f a s c 3

(* o-lPut? Lk

V: EL
B EGIN

FO~R 1::1 T0 10 DO

5 E "S N
V:=(S:IZME='T/Ml'TRIXZ T,eKJ)

:c (V<O THiEN

~L S

EN:

(* COrnItt? Uk azr U'k
VAR MI,,OI,: :TEGEZ;

T::--L;
Ec G

M : .,: 1 - : :
FZ :

3 E G :N

( I ( t 7 :, K: /~T H rxA! ~

V : LIN~C)
ELSE

V 1 UNIC (T-1)

lF (COUNT=-J) THEtN

u :
58



END

C .c7~ zT~33:: ITc3; :XI LIRIX - U,IP P!LM-:IN TROWS;
K: 4T E EL :NT S ;V ;R EN AR6 F 0LEA N)

(*Check if L.k <= Uk
8 E G :'

EL S

Et. DJ;

FCES T( J : :N'C n' ;J, K 1 14 -E -lV A PE ~N 0PAR T 6 S0OL E AN
VL L .~ V± I -=-ZW;A X:!NTCOLS;MTRIXA:RLMATRIx.

Cez c K:; tn S C i r c- t ?1act th? i-mo-oved solution~*

G:.

:LS:

j z i * <

J J E L J'.1:::
X"-

.~ : >K:P.

( ~ ~ oif r. t~.

XL 7 L...................................

t <=

%9



.... 1 -- -- --

PEV': D ]EE::T:: L ;fV:. O).,? JC W,TE~ mPCLT A:ITCOLS;
V VT F S V SS S ; S:.Z S P S lS WS ,M T pIx:PLMATRIX;X: ViTCCLS);

VARP P I NT E
BE 'S ;N

r- T (X, x F);
p ' - I? ( '-:, . ;,- - : L' '

T (" T LEX.
W;? T T-- L (0 UJT =L F )

~~( * .a rt 2 c h s-3-

..... R. 1 :. '17 ;V' S P O W S;S t' O-K 0 JR 0OW: I N T C LS;
V:- X :'.T LS;" T-' ( < "LV' : IX;V' 0': L'.I1TP:X;Vlq NEW O: NTCCLS;

V C L S- V 7 ¢  V. . N .' 7 2 C L FA

N :7 C -z -4 : LT. ....

h F.L ?'(='4 .: )

.7 T 1 1 C ' J X ' T ",TX, ="  3 )  A

~ ~ ~ ~ ~ ~ Jo X='; ( J:., S "- - ',,- v S , n ,  - K, END OR"T2);

SULT (X, EL 'S 'E S J ^', 21

P~ ta rt 2 f ~h3

P 2 XSC-.U --'-:: U.7 (- V S . S 3:-,R:S;.,. XTELTa : NTCO CLS

M 7 'M' X. :LVYC X;V' :'.C "L S V . Z 1 - PT , .'VF S T I'AT E: COL EAN) "

- Gu

:ESuL3(x,LT3:L,-J.,:,') ;

(* Step ? of :h ,s: w z, - if rS t 1)z-r ts 3- f it t d t o - 2t he r

J L*

4

. * [ i J : -2-E 7' ' '! ,S ,SV X-IL :NC

Vi " '5 " ..

1 F (;:6, ;-I C-

:L-

,Ill 60



I+

T: ='i ;

J: =O D-A: ;
~~~K ': = _ --.,

ELSE
C w E K J : = -L S ;

(* 3tep 4 of s- 3 -if ..r ent Erts ers it t, together

P 0CE 'J1  CHE KSTPI -,(V Z S A 1 E-') L EPN X,XL: INTCCLS) ;
(* Check if x is not 3ojE1 to xl
V"R E :t, 'E S
LE S t.• ~S A>.: :=TSUE;

FOR :=1 TO tl I
IF : 3T(X[ X L:O:) T ',

SAME= :=LSE;'. END;

2(* R set t. v-lj of 3" in Steo I of 0 z.rt

P; R:C.E REETI(j::T. ;V, ER:POW;S: CwS;LTA:INTCOLS ;

M AT;:XA:P LM x

(* t ' = . + . A
V; K ": ItT 

-.

BE GI:4
,:OR i =I TO 0 c

4 END;

(* eset the v.l; s o f x 7nd S 't St_, 5 of Pert 7

RtC"ZU E sSE C J,X::_' : ;,,' x: cc LS V S:-' S; S ; M=: ROWS;

L I: N T--61 T PI;

B E G 1 ',

X :. X K - L J-. . J K ,

FP =:1 T D
S[ _ := : ,,...._] L T, [J. J : , K %1,] ,'% T I y I K ;

E N;

(* :z t-: :--:' '" - .tk ,k i,k ) in Steo4 of P:'rt 7

J-r: -. ,' :T S: Lr H;S;) :ROWS;

T L
" 5E~iL



i 5BE -- 1

T :L = I 2r' -. EL v P " rJ, K ,*I AT, P X EI, K];
=  (T<0) T -F

I S - ::T 'UE;
E "Z,

EN C;

*. (* -Pet 5 cf Fs_ 3

O5JPOW,0EL- '4:ITCLS;VA' L,LPRIM=,U: INTRWS;VAR S:ROWS;
5--.; 4: C S ;;IXI LA -X;- -K ENE)-P.T5:!OOLEA N)

B E GIN
P; ; 5 1 (JK,' 'W- Y, J -  ° . L )

o-' ,T5iS J,,T . X S , L L " : , , U X S T

I F NOP A '5)T T H F
P T 5 XJ, K, , S F ,0 J:? C ,D.EL TAM AT .XA, ZL,UE ND P AR T5);

rESULT(X, EL: ;:LE,C.JoWz,5) ;
E EN [,;

(* Part c of Phzs3
C =RC 3:)I IT= ZTA J , : ''-. -" S LTAC J SW:: %,T :0L .V I1 LU,U P E:I NTRO-

V. 2ER Z ,,VX- ;V ES

A~ - r I J J :4v i '

?. RT 2 (3- 7 , : " ! iX-',K,L,^).3' C S' EJ :,O] -, , U .,"-) ;K -,)7 '.-

:F h14LT(E; '" T-=-:

(* =zrt 7 of P 3

F R I -:s:J :E -C7 c 7 L3,V ' T F,0E: O: LE'-II;V I ,T, K:I1TE ER
J. 7 E ; V. : . : ', - T - L ; V . 5 V 1 .F - :I ,=- L -IN TCCLs;:S

v R S E 7 2 C=' ̂L7'

£,AF: S 7E = SE

i D PA 7 7 ~AL
( (X [J- -- L - >= T u-Aj

.-S 77!(J, 5 -"..,1F S ,,D.FL T.1," T !X A

.'2::T j-;

£L3E

J._) '" Z = (T>'7) T'iT ':

ELSE

62



"= C((x EL'f'_<*' IM [JA )>=') AND ((X[K]-

T -_- "-- J, <= T

S ' 2:=F.ILS=';
C L K SL" C K (J , K, P:-' SS P R T ,D'L T A MATRI T

N' 0. T( J Et-S) T H FN

- : L S ;

:J:T . - KX, S,* SO: ME, ._L TA, P *=. .

L -

T 7. '-,

ELS

5 L 7S LT , 3 7'=-.-L ,: -Jr~ , , )
(,, ~ ~~~~- . ...- , , -

' '.
. -*

(* Ete =  -,5 B-: 3 c, ) , r. d feront -rts lre fitted toget.

... .z'E' 7' y V! c L,L : E, U,

T. , - , - _ :,,V L,

ET'= = .L E;

a . -X I, .e ,

u :* i. *"e c t3~ st f -nt o

(: .rci r r - -t s -t s7',

""""" : : :L.H

7- J-C:

= 7- < T H,4-,z

7,- H.-~ -N.

EL-
7 ~j:

(< ,) L IT

L $
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(* ere:K 1 n im -')ve e 1 io js ucur d~~:, R (JK ,Z-L%,C P:O W,Lo. -,UP '='NW:z n SfSPRMTIX.

'3. S- ;, T :7 T- '

_,, V.L:= ;
~= : c, : = l T O N O

:VL :=ZV AL+(YEG)*OrJiOW CG3) ;

i (,V;! <= Z) THEN

w-(- :nztial1;.= all tp)_? vr i-n!-?s

p:!.EU7 : .': I: LI Z-(V- COUNT .:INT=.E=;VA:Z VOSSIBLE, rOUND,TERMINATE,
..- :1 -.. --- : , S . ' - V =  'S T =' ,  D D A ' T 2 ." E.1 A T 3 ", E N o V A R T 4, E N O P A R T 5 "

. %]."rT , ; ,- "* , S :
,

,
:

'  O V - ' T  ' ' p '  ccJ : O LE AN;
' : :L".' INT-. ; z '  : !'TrCW ; VA ERL T .:!NTCILS);

. '/,AK :,J:I,.TE3ER;

ZN R7Z: - FA LSE

ED FAL S;

" --- LV ,
Ell. T= = L S

FS i::i T3 .:]
DA 7CY 7J : : ;4 L ' Z

ST;E: :'UE;
ST5: :-'UE;
"VvE TS-7E:=E

F:; 1:=1 TC -'

L- : : - ;

S T 7 Iz =

E - -

V4~ ,J.T::LE;

"w ~ ~ F ;, :: ',. ": -":"L S

TG E E 4, L

~L

S' -w L .JT

r~ w~ z * e hjc ), p r o!

F cZ C& r , J,K z %:T L IX. :PLv T ;VAS;
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C - K:= T9 0 Or

" U,:= I: T (SUl )
R 1 TO '1 0

: J:: T. DO

Tr:IX LI,J:: :=M TPIXA[IJ] / SUM;

w 4: S : / : ] S ;

ENE%

6 E

R P EC L EL ) ;
P* -. j t e a r ob Iem -n
P. 10 E, C C : R : ON I " T P X. I,*0 J PCW., ,Np R! SC PGR H S);

(* Rad th? result s ro -'i , ase 1

:X I '%:L:' - X I ) ;
7 - ' -: = 3 ZL h ( X : T L :'I-_ F )

1% A :L Z E 'C TE , S L -, 4A S E 2, S TP 1O,-

- -. r. 'ii: - :-z-s, o-- tri.s to f i C . i" i e solutior *)
(* cn tn e line sec.ten t (or s, mnts) between x end x2

5r- ,L N0TC:',' A ( :L'
E S I"

J J ST C = - xl, x .=, U" X 2 ;
W.--1 L-E N T '- 'i L E S'1 h3 (: C 2) C

STE : (T':'. X,Xl ,

:,~~~ ~ E: SJ ,.C,..,-

SPE( '. S, , 2 X X F, , AT X, ST A S IJQ, COUN :,? 4 N

t.Y'r' F -- ) '

1 T.- 1 L S U L

•~2 L S']T :S -.) " '

S T - 1 1 ( L ' , '- ... .; T --

:,.-,
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2EA :iJ 49 1
LS--: 3 ;s : 3L -" : :'AL S-

. CONT:- ;J-;

(* Phase 3.n this Phes.,- on. tries to improve the solution found *)
(* ~in Phzos 2. Two a lte'netir-, modps and Phase 2 tyoe search are
. (* for- this.

PA#TI (X, O' j,^3J COW, TE ' c,D-LT, WJ,RHS, -ATRIXA,X);

;I :. L- N3T( 5 E) M D

(, First mooe
P 2 -' ,S J;OW, X, VAT; ' X-, , NEW D,A R, TEMOC, ENDP ART-

XL!_7]::X[E2 ;

J-CM: :'K : : _- ,I T 7

;'.L= =C - J '

C' Seccr4 .fS'o-s = P-T.(?.%-S, _LTJSMATLIXA8M R A,,ENDPART4,INVESTI:

-,H:LE (CO';T) AND (NOT(IMPROVED)) DO

C HE K ST '4(J , ZK , EN DPI RT5-EN CPA RT .

:- (',0T(""0DOVE')) OR (STP7) THE'

- ((7-1) > A) THEN
9EIN

T :T -1;
K: ="O'DE RET];

END

SE N E;
tON!: =FALsE;

:
L -

-T ?(0 P F5 ": 3S, IT, KJ, X, S P IM :M S., E.L-

< S T ..E N A ,T,J J, K C 4 EC K J)"

" CK S T 10(S 12 7'_,X, XL ;

ii :SUL'; Y,'L:'7:-- J,'J ̂, , -I

~~F, Z L'.3 = LL '
Fc -- : 1 "]'7 "2 . '2 L::
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Sim: =(^d~j = : *x Cc))I +SI;

P* h S 2 type szlrcl, of '49thod 5 of Ph-msa 3

FOR P:1l TON FN1

I'I : 1 I X M*

S T r- -' ( SUM "Z : , kM 1,, x , A-X)
WHILE= NOT ('U!J:) Al.JC (COUNTER < 100) 00

S T i P? I(O ~ !:, X ,U1~ E~ L WS E', ZAS ALX);MZ

C' T Ll % T C OU N T: + 1;
E ND ;

C* Coin p.jta t' sa . .:-r ? r ao t of th- sum1 of th.- sciurre of C

F:RF: TOl N 0

V V
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